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REPORT No. 793

EXPERIMENTS ON DRAG OF REVOLVING DISKS, CYLINDERS, AND STREAMLINE RODS AT
HIGH SPEEDS

By THEODORE THEODORSEN and ARTHUR REGIER

SUMMARY

An experimental investigation concerned primarily with the

extension of test data on the drag of revolving disks, cylinders,
and streamline rods to high :Ylach numbers and Reynolds num-

bers is presented. A _tlach number of 2.7 was reached for
revolving rods with Freon 113 as the medium. The tests on

disks extended to a Reynolds number of 7,000,000. Parts of

the study are devoted to a reexamination of the yon Kdrmdn-
Prandtl logarithmic resistance law and the Ackeret-Taylor

supersonic drag formula and conditions for their validity.

The tests confirm, in general, earlier theories and add certain
new results. A finding of first importance is that the skin

friction does not depend on the Math number. Of interest,

also, are experimental results on revolving rods at very high
zllach numbers, which show drag curves of the type familiar

from ballistics. A new result .which may have general applic-

ability is that the effect of surface roughness involves two distinct

parameters, particle size and particle unit density. The part-
isle size uniquely determines the Reynolds number at which the

effect of the roughness first appears, whereas the particle unit

density determines the behavior of the drag coeffwient at higher
Reynolds numbers. Beyond the critical Reynolds number at

which the roughness effect appears, the drag coefficient is found

to be a function of unit density. In the limiting case of particle
"saturation," or a maximum density of particles, the drag

coefficient remains constant as the Reynolds number is
increased.

THEORETICAL BACKGROUND

YON K_RM_N-PRANDTL THEORY FOR PIPES

Measurements of the value of the skin friction between a

fluid and a solid constitute one of the means for studying
the nature of turbulent flow. Most of the pioneer analytical

work in this field is found in the papers by yon Khrm_n (ref-

erences 1 and 2) and Prandtl (reference 3). The treat-

ment used in the first part of this section follows the work of
Prandtl which, in turn, is closely related to the yon K_irm_n

papers. The theory, which concerns the flow in pipes, is

given in considerable detail as it forms the basis for the suc-
ceeding discussion on flat plates, cylinders, and disks. The

theoretical work in this section constitutes mainly an at-

tempt to analyze and organize earlier work found in many
scattered articles. Considerable work along such lines has

already been done by Goldstein, who is responsible for an

expression for the drag on revolving disks.
The yon K_irm_n-Prandtl theory for flow in the turbulent

layer is based on the following two assumptions:

(1) The ratio of the velocity deficiency to the friction

velocity is a function of geometric parameters only.
(2) Adjacent to the wall, but beyond the laminar sublayer,

the slope of the curve representing this ratio is inversely

proportional to the distance from the wall. The constant

of proportionality is a universal constant.
The friction velocity is defined as

and the corresponding friction length is defined as

(All symbols used in this paper are defined in appendix A.)
A reference time may be given as

T L o 14

The geometric conditions for a pipe are given by one param-

eter, the radius a. A revolving cylinder of infinite length

represents another single-parameter case, in which the refer-

ence parameter is the radius of the cylinder.
The equation of motion can be written in the form

and, by adopting suitably defined mean values with respect
to time, at a given profile

Henceforth u will designate such mean velocity. By

measuring the velocity with respect to a velocity U_ in a

fixed geometrical position c=ka,

u-g°_f,

is obtained. About 1930 yon K£rm£n showed that for the

turbulent layer this function is essentially independent of L
and dependent only on the geometry as indicated in assump-

tion (1); therefore

u-U, r.

1
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This quite remarkable relationship, which has been generally

confirmed by Nikuradse, Wattendorf, and others (references
5 to 7), implies a similarity in the turbulent-field pattern

away from the walls at all Reynolds numbers. The basic

reason for this similarity remains unknown.
It follows from assumption (2) that near the wall

1 log _+ConstantK

where 1/_ is the constant of proportionality. (Natural

logarithm has been used throughout except where otherwise
indicated.) Since u= U8 at y=$, this relation reduces to

u-- Ua 1 log yU, =7

This logarithmic relationship holds to a certain value c of

the significant parameter a (see fig. 1), where c----ka with k a
constant. The value of 1--k is only a small fraction, so

that the point c will be relatively close to the wall. The
velocity in the center of the pipe is therefore given as the

sum of three expressions, that is,

c y a

For the laminar sublayer

Ua
T--Z--=

and the equation may be rewritten as

1 a l e[_y)]"U_= __l log a+ log _-F-_ log a + arS_ a K °

a
=C_+ 1 log z,+C2

where

and

Cl=a -1 log a

C2---- + log a

The constant CI is equal to the nondimensional velocity
measured on the logarithmic velocity profile when this

curve is extrapolated to y----L, and the constant Ct is the
excess velocity in the center of the pipe as compared with

that of the logarithmic line extended to y---a. (See fig. 1.)

When these constants are combined, the mliowing general
relation is obtained:

U.= =C+I aU, log Z

The application of this theory to cases other than circular
pipes is restricted to geometric configurations given by a

single parameter. It is interesting to observe that both

CL and 1/K are universal constants resulting from the second

assumption--namely, that the flow near a wall is a function

of the distance from the wall only. The second constant
C2 which gives the excess velocity as compared with the

logarithmic distribution at a reference point, the location

of which depends on the geometric dimensions involved, is
not a universal constant but is dependent on the configuration

and the choice of reference length.
The effect of surface roughness may be treated in a similar

manner. If the roughness parameter _/L is less than a certain

magnitude, there is obviously no effect at all. This value
E

of _/L is found experimentally to be 3.3. For _ _ 3.3,

U,,,,x/U, is shown to be constant, or independent of L,

except for the so-called unsaturated condition which will be
defined later. Thus

1 a
=C+_ log 3.3

or

=c÷X,og3.3+1,oga.

U._ - 1 log a_,, =K|q- 7

The velocity distribution is exactly as if there were a

laminar layer present of a thickness 5=3.5e or as if the length

L were _-_ E. When L_ . E, the velocity distribution no

longer changes with an increase in Reynolds number R. It

seems, therefore, that the distance from the wall of the
innermost disturbance, or the mean value of the thickness

Velocity prohle _hown by heavy line

0 8 16 24 32 40 I

FIGURE 1.--Parameters and functions of the velocity profile by the yon K_rm[m-Prandtl
theory.
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of the laminar layer, is of the order of three to four times

the height of the irregularities or the grain size _. This fact is

not inconsistent with the physical interpretation.

The quantity U_/L_ is shown to equal --q-2-C--DD"Further,

u

and, therefore,

where R is referred to the maximum velocity and is equal to
5_,¢t/v. The equation

U,,_ CA- 1 a
_, = _ log Z

may thus be written

or

where

1-- C3+1 _22 log R_i_-'_

C-1log_/_
C3=

By the similarity hypothesis, the mean velocity in a pipe
differs from the maximum value by a constant, or

U__ U_,_ K.
U-U-2

where U_, is the mean value of the velocity. Prandtl gives

4.07 for the value of K2. (See reference 3, p. 142.) Note
further that the product R_c'C-DDremains the same whether

R and CD refer to the mean or the maximum value of the

velocity; therefore,

U., l log Rq____2_D=C--4.07 A--_

and, finally, with R and CD referring to the mean velocity,

1 - 1 1

_-_D= C_A-_- -_ log R_C-_D

where

C--4.07-_1 log _2
g

With C=5.5 and _=0.4,

C4_0.4

This value is not accurately established, as the various
authors seem to differ.

DRAG OF ]FLAT PLATES

In order to obtain the drag formula for flat plates, a
calculation similar to the yon Kfirmttn-Prandtl treatment

for pipes may be performed. The velocity deficiency AU is
given by the relation

U,,.-"\x]

where U,,, is a mean value between 0 and x, the distance

along the plate. The missing momentum may be written as

M= pU _ 1---_ --_ dy

or

M (5, hu /'5,

where U is the stream velocity and t, is a significant length

giving the thickness of the boundary layer. Rewritten,
this equation becomes

M U.., ('l Au
p/_-- U 6_Jo =(I)

or, by virtue of the similarity law,

M U.,, _,Cs_{U.,_\'_._LV.)61Cn

Since the momentum is given directly as

1
M=-_ oU2C.,.z

the following identity is obtained:

or

which gives

_iI 1 V 2

x=C_l c_2

Using the logarithmic deficiency relation gives for Cs the

value 1/_, or 2.5, and for CUC_ the value 2/_, or 5; thus

yz

3
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By use of the yon K_rm_n-Prandtl treatment, the stream

velocity is obtained in essentially the same form as for pipes.
With small adjustments, therefore,

U .. , 1, _IU_.,
_=n_t_ log--7-

By use of the expressionfor _,/x,the followingequation is
obtained:

_l_=K,+4 07 logt0
R,Cz,_,

_/Cm_ " 1--3.54_

LOCAL VALUES OF DRAG COEFFICIENT FOR FLAT PLATES

It may be noted that a relation for the local drag coefficient

on a fiat plate may be found in a fashion similar to that used

later for a disk. Consider a plate of unit width, for the full

length l,

With the subscripts m and x referring to mean and local
values, respectively, for the length x,

D_ -=Co.,X
1

=re"Co, dz
or

Rv
x----_-

d-_" + Co _ = Co,

R

Co Vd(]og Co./± I]=Co."L d--_g_7) T
Therefore

Co,----Co,(n+ 1)
where

dOog CD,,)
n---- d(log R)

BOUNDARY RELATION FOR REVOLVING DISKS

The moment coefficient is defined as

C.,=1 M
P¢#2as

The moment may also be written

M= 2p _osI(2Ta)u,u# dy

=2pJaS(U.,,,'_26, t U.

where u, is the variable radial velocity and ut is the tangen-
tim velocity, from which

or

I,._{u.,'?_c:

- _ Constant
a

The drag formula then reads

_/_-_o=Ks+_ log R_-o

A similar result was obtained by Goldstein in reference 4.

TESTS AND RESULTS

Tests on disks,cylinders,and streamline rods were con-

ducted to determine drag or moment coefficients.For the

cylinderthe two coefficientsare equivalent;for the disk and

the rod i_ismore convenient to employ the moment coeffi-

cient,which can be measured directly. In order to extend

the range of Mach number, several tests were conducted
with Freon 12 or Freon 113 as the medium. The test

resultsobtained are of technical interestbecause some of

the data, particularly for the high Mach number range,
were obtained for the first time. It may be pointed out

that many of the earlier tests on revolving disks and, in

particular, on revolving cylinders were conducted on a
rather small scale and in a limited range of Reynolds num-

ber. It may be noted that a considerable range of Reynolds

number is generally needed in order to confirm with suËfi-

cient reliability a particular theoretical formula. For
instance, it may be impossible to obtain a measurable

difference between logarithmic or power formulas if a short

range of Reynolds number is available. This matter of
distinguishing between the various types of formulas is of
theoretical interest.

EXPERIMENTSON REVOLVINGDISKS

The moment coefficientisdefinedas

M
C_-----

1 2 6
_p,., a

This definition corresponds to the one for laminar flow on a

revolving disk given by yon Kgrm_tn in reference 1 as:

CM=aIR -In

where

ojR 2
R_---_

v
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The constant a, used by van K_m_in was 1.84 for one side
"or 3.68 for both sides; this value was later adjusted by

Cochran (see reference 8, vol. I, p. 112) to a_=3.87. If this

corrected value of a, is inserted, the formula for laminar
flow reads

CM=3.87R -U2

The turbulent-flow formula as given by van K_nfin for

revolving disks is

CM=0.146R-115

In figure 2 are shown the experimental results for tests of a
series of revolving disks. The Reynolds number ranged

from about 1600 to more than 1,000,000. Note that the test

points lie along the theoretical curves given by the van
K_mhn formulas. The transition from laminar flow is seen

to occur at R=310,000. This was the largest value reached
with the most highly polished disk.

The thickness of the laminar boundary layer is, according

to van K_irm_n,

_=2.58_/_

or, which is equivalent,

Using R,= _'_a leads to
u

6
-=2.58R-1/2
a

=_=2.58R -L/2

For the transition Reynolds number, 310,000,

R_=2.58_/R

= 1440

which is of the same order as the minimum critical value

obtained for pipes.
Several tests were conducted for the purpose of investi-

gating the factors affecting the transition Reynolds number.
The first observation was that the transition Reynolds num-

ber could not be increased beyond the value 310,000 no

matter how highly the surface was polished or whatever

other precautions were taken. Likewise, it was unexpectedly

difficult to decrease the transition Reynolds number. The

application of coarse sand (60 mesh) glued to the surface of
a disk (1-ft radius) only reduced the transition Reynolds

number to about 220,000 (fig. 2). The reduction in the

transition Reynolds number by initial turbulence was also
studied. A small high-pressure air jet applied near the cen-

ter of the disk produced the greatest observed reduction

(fig. 2) and brought the transition to a point near the inter-
section of the lines representing the drag formulas for lami-

nar and turbulent flow, which is the absolute minimum.
Note that the drag in the turbulent region is quite appre-

ciably increased by surface roughness.

-/. O

..... yon Kdrm_'s-_'2T____-_,_ .c,=s.szR

-/4 _

9.

0

"_ -/. 8

-2.O

_-Z2

3.8

/an_nar-Flo w

4.O 42

f ormu/o, 0 24-in.-diom. _'Sk in otr
+ /Z-_.-diam. dish in ecr
x Small dlshs on synchronous motor
o k_-je_ on smooth 24-in.-diom. dls_
0 60-mesh sond on 24-/n.-dam. disk

I I

yon Kdrm_n's f_bu/ent-flow
" CN=O./48R._ ....

8 _

|

5.#4.4 4.6 4.8 _.0 5.2 5.G
Lo_R

FmuR_ 2.--Moment coefficient C_-T_. for disks as function of Reynolds number.

formulo,

o
0

o o

0

* ._ oJ_'-_- _ _ _,_L
_- ""Calculated curve based --
, on transition

__Reynolds number of 310.000__

5.8 6.0 G.2 6.4
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The values of the moment coefficient given in figure 2

represent obviously an integrated drag over the disk. An

expression may be obtained for the local drag coefficient CDz
as a function of local Reynolds number as follows:

By substituting

= 2 f [C_= _ lp_2r_) (2_rr_)dr

M

1 = 5
_pw a

fo'=41r Cl)z \a] \al

dC,, ( e r\' e r\'
d(r)\a ] 5C. ta) =4:C., t-a)

r dC_ t" 5C_----4TCD=

1 dC_.5_

or

and

where

If

then

1 Fd(logCu) __5]Co: = 2_ CM O _g_

log CD==log C_+log 2T

K=d(log CM)
d(log R)

Cu=cR"

C _5-t-2n

By use of the expression for log CD=, some of the data of

figure 2 are plotted in figure 3. Although the general picture
does not change much, the abrupt nature of the transition

becomes apparent.
An illustration of the boundary-layer profiles for various

radii or Reynolds numbers is given in figure 4, in which

curves of equal velocity u,/_r are also plotted. Note that
the thickness of the boundary layer in the laminar region is

essentially constant. The transition value of R, 310,000,

is shown approximately by the line marked "Approx.
transition" in figure 4. The nominal laminar boundary-

layer thickness consistently appears to be somewhat in excess

of that given by yon K_rmtln in reference 1. There appears
to be some discrepancy from the theoretical velocity distri-
bution which is shown for the laminar boundary layer as

-/.6

0

-2.4

-2.6

-2.8

Turbulent flow,,"_ " "_ '-'"_ ..."_L_D=--ZDS + #.07 IogN)_

Laminar flow, _ _

_.0 4.2 4.4 4.6 4.8 5.0 5.2

....60-mesh sand on 24-//%-o_btn. dss/_

d
5.4 5.6 E.8 6.0

L og,_Rz

..... Smooth 24-_.-d/om. disl_

Turbulent flow. _,
./

&2 _4 _6 _8

Fmus¢ 3.--Local drag coefficient for disks obtained by differentiating the moment-coefflcient curve.
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obtained from work by Cochran. (See reference 8, vol. I,

p. 112.) It is recognized that the experimental error in this
case is of considerable magnitude. The turbulent boundary

layer shows almost perfect agreement with the logarithmic

curve, which is plotted for one profile in figure 4.

It may be remarked here that a series of hot-wire tests
were run to study fluctuations in the boundary layer with the

following results:
(1) No disturbances were noted in the laminar region

(2) A pure tone of a frequency of about 200 cycles per

second was observed in the transition region

(3) A random disturbance involving much higher fre-
quencies was observed in the turbulent region

In figure 5 the upper range of the Reynolds number has
been considerably extended. The highest Reynolds number

1
reached is 7,000,000. The R-power law holds fairly well in the

observed range which, however, is too limited to permit a
distinction between the power law and the logarithmic law

for the velocity distribution. The main purpose of the tests,
the results of which are shown in figure 5, was to investigate
the effect of the Mach number. The first run taken with air

as the medium extended to a Reynolds number of about

2,000,000 and a Mach number of 0.62. By using Freon 12
as the medium, the range of Reynolds number was extended

to 7,000,000. At the lowest pressure, the highest value of
the Mach number reached was 1.69. All the data for Freon 12

show a slightly higher drag than that given by the yon
K_rm_n formula, apparently because of some systematic

error. The significant result of this investigation is that the

AND STREAMLINE RODS AT HIGH SPEEDS 7

drag coefficient is absolutely independent of the Mach
number. A separate extension of the experiments to a Mach

number of slightly more than 2 further confirmed this inde-

pendence of the Mach number.

EXPERIMENTS ON REVOLVING CYLINDERS

The experimental results for revolving cylinders are shown

in figure 6 as a plot of logl0CD against logloR, where R= '_a2.
v

The drag formula for laminar flow on a revolving cylinder
is obtained from Lamb (reference 9, p. 588) as

4

where

M

--qSa

In this formula S is the surface area and a the radius. In

this case it is convenient to use CD instead of C.v, which was

used for the revolving disk, because no integration is in-

volved. The laminar curve is shown in figure 6. The drag

relation given by

1 --0.6_4.07 logl0 R_/C-_r,

for the turbulent flow is also shown in figure 6.

8 85 ,9 _5

215.000 24/.000 27Z, OOO 303.. 000

I 0 / Q5 / I 1)Jzk r'oc_L_s

.33_, 000 370,000 _0#,000 R

I_rninor

0

842332--49---2

•8 0 .4 .8 0 .4 .8 0 .4 .8 0

FiOURIC4.--Observed velocity profiles on revolving _sks showing the transition region.
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The experimental results are replotted in figure 7, where
1

_/_ is shown as a function of logloR_/CD. The relation

for the turbulent flow

1
------0.6+4.07 logloR_/_

appears in figure 7 as a straight line. The coefficient CD in
this formula corresponds to a value of 0.4 for von KgLrmhn's

universal constant _. The relation for the laminar region
4

CD=_ appears as a curved line near the origin.

It is noted that the drag coefficient for rough cylinders is

dependent on the relative grain size e/a, where e is the size
of the sand and a is the radius of the cylinder (see fig. 8),

and that for each grain size the drag coefficient remains

constant and independent of the Reynolds number beyond
a certain minimum or critical value, which lies on the line

for turbulent flow. In regard to the magnitude of the drag
coefficient as a function of relative grain size for particle

"saturation" of the surface, it may be remarked that the

value of a is a measure of the thickness of the sublayer or,

what amounts to the same thing, a measure of the minimum

grain size of the turbulence. It is therefore to be expected
that the surface roughness will become effective at the

Reynolds number for which ec,, the critical value of e, be-
comes less than the grain size e. Inversely, it may be seen

that, if the Reynolds number becomes smaller than this

critical value, the grain size of the turbulence is too large to
be affected by the surface roughness. With e greater than

ecr, which is 3.3Z, the following relation is approximately

true for the drag coefficient beyond the critical Reynolds

-.4

-L2

(3

"a -/.6

-2.O

-2.4

Lom,nar flow,
4 \

8

1

-286 LO ?4

Lom/_or flow,

1
F]oua_¢ 7.--Drag parameter _ for smooth cylinders as function of log_0R-f'C'_D.

Symbol Send r/a -
Diem. L enqth

(in.) (in.)
o _/_ 6 40 mesh 006
+ I 12 4Ome_h 03 --

x / I_ _00 mesh .0 I_

a 6 33 40 mesh .OOS -

v 6 33. '00 mesh .002

" x a'. o o 9,0 6 a_ _ _ _o • .,...., ,

\
"urbul:n';low;°r'm°°$h C//i_d, _._ l l l :

' [I
Z8 _.._" 2.6 30 3.4 3.8 4.2 4.6 5.0

L ogm R

Fmvgg 8.--Effect of surface roughness, or grain size, on the drag coet_eient. Saturation density of particles.

5..4
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/2

/0

__L

8

4

2

/
/

/o
/

/

0 .8 1.6 2.4 3.2 40 4.8

L og _o--_'-

1 fJ

FIOURE9.--Drag parameter _ for rough-surfaced cylinders as function of log=0¥-
-,vL,z)

number for surface roughness of saturation density:

1
_rV__=-0.6+4.07 log,o 3.3 _-_

a
=2.12+4.07 log10

In figure 9 the experimental points are shown to satisfy this
theoretical relation with sufficient accuracy.

Tests were made to determine the effect of the density of

spacing of grains of a given size, and the results are presented

in figure 10. Such tests were made with a certain unit

grain size but with the surface density in grains per square
inch varied between 90 and 2200. The grain size used cor-

0responds to the size a= .0_, also used for the preceding ex-

perimental results shown in figure 8. It is verified that the
critical Reynolds number depends on the grain size only,
and it is further shown that the slope of the drag curve

beyond the critical Reynolds number is a function of the
density. A saturation condition evidently always exists,

in which the drag coefficient remains approximately con-

stant and equal to the critical value.

EXPERIMENTS ON STREAMLINE RODS

In figure 11 results are given for certain more or less stream-

line bodies, each tested in two or more different mediums.
The tests were obtained by using actual propellers of 12-inch

2

-,J

-.4

_8

-/.2

-2.O

\
\

\

L ornimor- f/ow.

\
\

\
c_._R .............\

o cyhnder
+ 90"
x 310, gr'aln5 of 40-mesh
o 730 5o'_:/per sqin.
o 2ZO0. ---

\ (

\
\

•8 1.2 L6 20 _4 Z8

0

_. ,i "'--- Tcrbulcanf flow fo_ ._moolh cyli_$,

I I I
38 4.0 4,2 48 52

L ogjo R

F;GURI 10.--Effect of varying density of surface roughn_ on the drag coefficient.

L4_



DRAG OF REVOLVING DISKS, CYLINDERS, AND STREAMLINE RODS AT HIGH SPEEDS 1 1

diameter, which are designated propellers B and C. Pro-
peller B had a section of double symmetry with a circular-arc
contour line. Propeller C was obtained by reducing the
chord of propeller B by removal of about one-fifth of the
chord near one extremity to obtain a blunt-nose airfoil. By
running propeller C backwards an airfoil with a blunt trailing
edge could also be studied. The coefficient used in figures
11, 12, and 13 is the standard torque coefficient for
propellers

co=Q 
For the symmetrical airfoil B, a value of the Math num-

ber 1of about one was reached in air, the range was extended
to 1.6 in Freon 12, and the characteristic decrease in the drag
coefficient was finally reached in Freon 113. A considerable
decrease in drag coefficient was noted at the largest Mach
number, 2.7, which to the knowledge of the authors is the
highest Mach number reached except for a few cases of
projectiles.

.0104

12O96

Propeller C,

--. blunt edge leod#_g.....

I

DO80

.0072 _!

II
r;

.0064 ±
!

L

.0056 ]

LjI'

oo,s 141;/

i, !t!°o040 ." I!°
+ t;

oo32 f !1'_

.0024

_, x"

.00/6 _i_o
v

lO008 _ _'

8

A

! a

!

• I ......F_opeller C,
'1 ._horp edge leod,ng

, x /"

rx \

...i,.'-Prope#er

o o _

Cas Propeller

o Air }a Freon 12 C blunf edg_
leoclinq

+Air }x Freon 1E" C, sharp edge
-- leading --

Freon 1_3}
0 Freon II B, 3ymn_fFIcol

Air circulor-ow_c
_rfoi/

3 4 8 12 [ 6 20 24 28
Mach number;, M

C Q
FIGURE ll.--Torque coefficient e--_ asfunction o! Mach number for propellers B and C.

Note that the Macb numbers used in figures 11, 12, and 13 are based on the tip radius.

/_res Sur e Go,S
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I
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/
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/
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/.2 Z6
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FIGUR_e 12.--Torque coe_ileient £Q--_ as function of Mach number for propeller E.

0 Freon 12
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/

/
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i
° l .....
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0 2 .4 .6 .8 LO 12

Mach number,

c q
F_eus¢ 13.--Torque coeff]cient e-_/_ asfunction of Mach number for propeller D.
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The blunt-nose airfoil section C showed approximately the

same low-speed resistance as the symmetrical sharp-nose
section B but had a maximum torque coefficient very much

in excess of that of section B. The test extended only to

near the peak of the torque curve with Freon 12 as the
medium. By reversing the direction of motion of propeller

C to obtain a blunt rear, the expected large increase in drag
at low Mach numbers was observed. The appreciable

difference in Reynolds number for air and Freon 12 is

apparent from the difference in drag coefficients in the range

below a Mach number of unity. For higher Mach numbers,

the drag coefficient of the section with the blunt rear lies
between the drag coefficients of the doubly streamline section

and the blunt-nose type; the streamline leading edge is

approximately twice as effective as the streamline trailing
edge, a result in general agreement with earlier observations.
it should be noted, however, that the lowest drag is obtained

with both leading and trailing edges streamlined.

The effect of the Reynolds number is also shown in figure

12, which gives the results of tests to study how the scale
effect is superimposed on the Maeh number effect. It should

be noted again that the Reynolds number effect appears only
for a Mach number below unity. A wide variation in the

Reynolds number shows no consistent measurable effect on

the drag for a Mach number greater than unity. Similar
data for a small angle of attack, instead of zero angle of

attack as used in the preceding discussion, were used in one

case, for which results are given in figure 13.
The four i_ropellers referred to in figures 11 to 13 are shown

in a photograph (fig. 14) and the dimensions of the propellers

are given in table I.

TABLE I

DIMENSIONS OF PROPELLERS OR REVOLVING RODS FOR

TESTS AT HIGH MACH NUMBERS

[All propellers have a straight taper in chord and thickness. The tips are rounded a,s shown
in fig. 14.]

Airfoil section

Circular arc .........
Blunt nose ..........
Circular arc .........
Circular arc .........

Pitch
(deg)

o
o

62.5
o

At 50 percent radius

Chord Thickness

___ (fla.) (in.)

1.75 0.31

1.30 .3,5

1.44 .18
.83 .13

At 92 percent radius

Chord Thickness
(in.) (fla.)

1,07 0.14

• 82 .15

1.03 .It

.52 .07

Propeller
designation

• Propeller D was twisted so that approximately the outer half of the blade had an angle
of attack.

It is of some interest to interject a superficial analysis of

the results presented herein, in view of Ackeret's formula

as given by Taylor (reference 10). For the local section
Ackeret gives the drag coefficient as

/v 2 \-_,'_

C_=2_--1) (2a2-{- _t2-[- _22)

where the bar indicates the mean value. For zero angle of

attack and a symmetric section with flt2=fl2 2, this relation
becomes

oo;4ty U

For a circular-arc section, fl =_ fl,._ 2, where fl,,.= is the

maximum angle. This angle is, in turn, approximately

equal to twice the thickness ratio t, which is the total thick-
ness divided by the chord. For circular-arc sections,

therefore,

CD_.._? (_-- I )-I/2t 2

Figure 15 shows C. plotted against Mach number for
different values of t. At M: 1.0, the curves tend erroneously

to infinity. This effect follows from a simplifying assumption
used in the derivation of Ackeret's formula.

Figure 14.--Propellecs B, C, D, and E.

24

20

,16

./2

.08

04

0 .4 .8

\

\'\
\ \

/2 /6
Moth numbeqM

t

.====.. ,/_

.04
2.0 2..d 2.8

Flovaz LS.--Thoeretical curves of the drag coefficient CD against ,Mach number for various
thickness ratios lor circular-arc airfoils by Ackeret's lormula.
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By using the general form] (M) instead of the Mach num-
y2

ber function _--1, the drag coefficient may be written

ca= _ t_f(M)

The torque coefficient is known experimentally to be a

function of the Mach number, or 1/x_, where xl is the fraction
of radius at which the Mach number is unity; thus, the fol-

lowing integral relation is obtained:

There are several ways of handling this relation. The non-

dimensional chord c and the thickness t may be taken to
represent a preferred section at approximately 80 percent

_4

2.0

/.8

.d

Expenmen to/ ....
/

I
I

/
!

I

.4 .8

,1111
I Theore ficul,

, ;-_
....(M'-!..,

\

\

0 /.,_ /.6 _0 2.4 8.8
Much number, ]*4

FmURE 16.--Values of drag function/'(._l r) a_ function of Much number from analysis of
experiments] moment curves for propeller B in figure 11.

of the radius. By assuming an initial drag coefficient CD

any desired accuracy may be obtained by iteration methods.
The function ](34) shown in figure 16 has been obtained

for propeller B by such a process based on the experimental

data given in figure 11. Note that the drag coefficient
approaches the value given by the Ackeret formula for large

values of M, for which/(M) approaches (M2--1) -In. Note
further that the maximum value of the drag coefficient

occurs at M= 1.2 with/(M) almost exactly equal to unity.
It is, of course, not to be concluded that the function/(M)

has general validity; the function is given here for propeller B
for the purpose of comparing the data with the Ackeret

theory.
CONCLUDING REMARKS ' " °

Experimental results on the drag of revolving disks have

been presented, which substantiate to a remarkable degree
drag formulas based on the yon K_rm_n-Prandtl theory of

skin friction. The range of the investigation was extended

to a Mach number of 1.69, which is beyond the range of any

earlier test, and to a Reynolds number of 7,000,000. It was

established that the skin friction is independent of the Mach

number up to this value and appears to be a function of the

Reynolds number only.
The drag at supersonic speeds was studied with revolving

rods or propeller sections. Mach numbers as high as 2.7
were attained in the tests. The drag at supersonic speeds is

a function of the Mach number only, as it appears to be essen-

tially independent of both the Reynolds number and the
nature of the medium. The characteristic peak in the drag

curve observed for projectiles was obtained. For thin
streamline bodies, this peak appears at Mach numbers only

slightly beyond unity; in fact, it appears at a Mach number
of about 1.2. Systematic tests were conducted on stream-
line bodies with combinations of sharp and blunt leading

and trailing edges for the purpose of obtaining the relative
merits of such features. It was found that the increase in

the peak value of the drag coefficient resulting from a blunt
nose is about twice that resulting from a bhmt trailing edge,

when both drag coefficients are compared with the drag

coefficient of a section with streamline leading and trailing

edges, which has the lowest value.
Significant results were obtained on revolving free cylin-

ders for which references to earlier tests seem to be lacking.
It was found that, at very low Reynolds numbers, the drag

asymptotically approaches the laminar drag of the c!assical

theory whereas, at higher Reynolds numbers, the drag is
found to conform to a logarithmic formula of the yon

K_rm_n type. There is no distinct transition from laminar

to turbulent flow, as is found in pipes and on revolving disks.
The flow is essentially turbulent down to the smallest

Reynolds numbers.

The effect of initial turbulence was particularly studied in
connection with tests of revolving disks. It was found f_hat

the transition Reynolds number was very slightly affected.

The critical Reynolds number at which the roughness effect

appears depends on particle size only and is not a function
of particle density. Beyond this value of the Reynolds num-

ber, the drag coefficient is constant only when the surface
is "saturated," that is, when the density of the individual

particles attains a maximum value. For a roughness of less
than this particle density, the drag coefficient decreases with

Reynolds number.

It is interesting further to note the persistence of the
logarithmic relationship. When 1/_ is plotted as a func-

tion of log R_C-DD (where Ca is the drag coefficient and R Is
the Reynohls number), the lines representing turbulent flow

are invariably straight. A rather critical demonstration of

the logarithmic velocity pattern near the surface is thus

shown. The range investigated is of considerable extent.

LANGLEY _[EMORIAL AERONAUTICAL LABORATORY,

NATIONAL ADVISORY COMMITTEE FOR ._kERONAUTICS,

LANGLEY FIELD, VA., April 2_4, 19/_/_.
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friction velocity (_/_)

shear per unit area at surface
mass of air per unit volume

mean friction velocity (from 0 to x)

stream velocity for flat plates
maximum velocity

mean velocity (in pipes)

reference velocity (at a given fraction of
radius or of other reference dimension)

velocity at S

absolute variable velocity of fluid in
boundary layer

velocity deficiency, stream velocity minus

local velocity for flat plates
radial velocity for disks

tangential velocity for disks
angular velocity, radians

thickness of laminar sublayer
boundary-layer thickness

friction length (v/U,)

total length of plate
reference time (L/U,)

time; also, thickness ratio for propeller

(Thickness of airfoil)section \_ C--_ r-d

coefficient of kinematic viscosity

coefficient of viscosity

variable radius of pipe, disk, or propeller
radius of pipe, cylinder, or disk; also,

velocity of sound in fluid

distance from leading edge of flat plate in
direction of flow; also, fraction of pro-

peUer radius (x= r where R denotes

radius of propeller tip)

fraction of propeller radius at which Mach

number is unity
distance normal to surface

nondimensional profile constant for turbu"
lent flow near wails

fraction of reference dimension (C=k);

also, nondimensional chord of airfoil

Chord

APPENDIX A

SYMBOLS

_m

G_
D

D.

E

ECr

M

R

Ra

Rz

Rd

Ra
7)

q

S

Vq
Q
N

1'L

fit, O_

C=Ct+C2
C3, C_,...
K,, K2, K3 ....
k

at

angle of attack of airfoil; also, profile
constant (S/L)

total-drag coefficient (Many authors use ],

% or _/4 instead of CD for pipes.)

mean drag coefficient (from 0 to x)
local drag coefficient

drag; also, propeller diameter
drag of plate (from 0 to z)

grain size of roughness

grain size of critical roughness for particu-

lar value of drag coefficient
moment coefficient for revolving disks

missing momentum; moment for disks; or
Mach number

Reynolds number

Reynolds number based on thickness of

boundary layer
Reynolds number based on distance from

leading edge of flat plate or on local
radius of disk

Reynolds number based on pipe diameter

Reynolds number based on pipe radius
velocity (Ackeret formula)

1 2 2

dynamic pressure (for cylinders, q=_o_ a )

area of cylinder
torque coefficient (Q/ pn2D 5)

torque
number of blades

rotational speed, revolutions per second;

also, coefficient in power law

angles which upper and lower surfaces of
airfoil make with center line

maximum angle which circular-arc section
makes with center line

nondimensional velocity measured on log-

arithmic velocity profile when this curve
is extrapolated to y----L

nondimensional excess velocity at y=a

over that of logarithmic line extended

to y=a

constants
constants

constant

constant in equation for moment coeffi-
cient of revolving disks



APPENDIX B

NUMERICAL VALUES OF POWER REQUIREMENTS FOR REVOLVING DISKS AND CYLINDERS

A chart is presented (fig. 17) which gives the horsepower
required to drive a smooth disk in standard air (760 mm

and 15 ° C, p----0.00238 slugs/cu ft and u----0.000159 ft2/sec).

Lines of constant horsepower ranging in value from 0.01 to
1000 are plotted with disk rotational speed (in rpm) as
abscissa and disk diameter (in ft) as ordinate. The dashed

line in figure 17 represents a Reynolds number of about

400,000, which is considered the transition Reynolds
number.

The following formulas were used to calculate the power

for disks operating in the turbulent region:

CM=O.146R-I/6

M,_
Horsepower=_- 6

----0.146
fo-llSa-21Bp-ll6

1_-1/$

= 0"14i____6p0.Sa¢.%_2.s#0.2
550 X 2

Inasmuch as the formula for C._ is based on the 1/7

power for velocity distribution, the calculated values of CM

/o0

_0

,5

--_..
x.d

TronsHJOn from

I lit

I Ill

I I\1
l"J I r
,L IM-,I

Ih_LI

/.0
/ornlnor to turbulent f/ow

i i J i[

, iiJJ
1
: IIit

IIII
i llll

, lill
[ ! IIII

I ' Ill
10o

e_;epO /er

_ ,_, _-_,

_'_ ,...,

/,00o I0.000
Rotol_ono/ speed, rpm

F;_u_t_ 17.--Powe¢ requirement for smooth disks,

_OOO

are too low for high Reynolds numbers. This error may

become appreciable for the highest power, since the chart

(fig. 17) covers a range of Reynolds numbers to 60,000,000.

A chart is also presented (fig. 18) which gives the horse-

power required to rotate a smooth cylinder of unit length

(1 ft) in standard air. The following formulas have been

used in calculating the curves:

Mo_ = CvqSa_

= 2 _ra Cop°_2a-----_la¢o
2

Mto

ttorsepower=550

_ C,_'_ _
550

where, for smooth cylinders,

1

q,-_= --0.6+4.07 log,oR_/C_

and, for rough cylinders,, > _ ,_,

=2.12+4.07 log,oae

/00 /,000 I0,000 40,000
Rotohono/ speed, rprn

F_ua_ 18.--Power requirement for smooth cylinders ([-ft length).
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APPENDIX C

COLLECTED SKIN-FRICTION FORMULAS
FLAT PLATES

SYMBOLS

The following symbols are used iu the formulas for flat

plates collected herein:

Co total drag coefficient

CD_ local drag coefficient at point x

x distance from leading edge of fiat plate in direction of
flow

l length of fiat plate in direction of flow

R Reynolds number based on l

R_ Reynolds number based on x

LAMINAR FLOW

The formula for total drag coefficient

CD= 1.328R -1/2

is based on the simplified hydrodynamic equations developed

by Prandtl in 1904. (See reference 2, p. 2.) The constant,
which was calculated by Blasius in 1908 as 1.327, was cal-

culated by TSpfer in 1912 as 1.328. (See reference 3, p. 89.)
The formula for local drag coefficient is

Cl)z---- 0.664Rz -1/2

Von K_rmhn, Schoenherr, and others have indicated that, if

the total drag coefficient is

CD=Constant R"

the local drag coefficient is given as

C,,---- (n+ 1)CD

This relation is derived in the section entitled "Local Values

of Drag Coefficient for Flat Plates" in this paper. All for-

mulas given in this appendix for the local drag on fiat plates

are in conformity with this derivation.

TURBULENT FLOW--SMOOTH SURFACE

The formulas

and
Co__--0.074R-1/5

Co_=0.059Rz -its

were first calculated by yon K_rm_ in 1920. (See references
1

1 and 2.) Based on results from pipes and on the T-power

law for velocity distribution, they are consequently valid

in the lower Reynolds number range, R_10,000,000.

16

'ONE SIDE)

Some writers use the following formulas of the same

type, which are fairly accurate to a Reynolds number of

500,000,000:
C_=0.030R -'a

CDz=0.026R, -l_

Of more general validity are the so-called logarithmic drag

formulas of the type

1

=4.15 log,0RCD

The form of this relation was determined by yon K_rm_n

with constants adjusted to conform with data by Schoenherr
and others. (See reference 2, p. 12.) In the present paper
a different form has been developed, which is in somewhat

stricter theoretical conformity with the physical relations
involved:

1 RCD

_/_--_=4.07 togt0 1--3.54

Prandtl has developed an explicit expression which gives

essentially the same results as the logarithmic formulas. It
is

CD----0.455 (log,0R) -_._

(See reference 3, p. 153.) The local drag coefficient has also

been given by yon K_rm_n in a logarithmic form with the

constants adjusted to fit the experiments of Kemp, which
included measurements on small movable plates inserted on

a long pontoon. This formula is

1_ = 1.7 + 4.15 Iog,oR,CD_
(JDz

(Seereference2,p. 12.)

TURBULENT FLOW--ROUGH SURFACE

Schlichting (see reference 8, p. 382) gives the two following

formulas for the total and the local drag coefficients for rough

flat plates, respectively:

Co=(1.89+ 1.62 log,0 z) -2"_

C_z=(2.87 + 1.58 log,0 _) -'6

Von K_n_n (reference 2, p. 18) gives for the local drag

coefficient for rough surfaces a formula of the logarithmic

type

1-=5"8+4"15uo, log,0_x__/_,_
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PIPES

SYMBOLS

The symbol Rd used in this section refers to the Reynolds

number based on the pipe diameter and the mean flow

velocity, and the symbol R_ refers to the Reynolds number

based on pipe radius. Some writers use f or 7 instead of
CD, used herein, and others use k where X----4Cv.

LAMINAR FLOW

For laminar flow in pipes the formula for drag coefficient is

16

This formula is attributed to Poiseuille and Wiedeman.

(See reference 3, p. 38, and reference 8, p. 298.)

TURBULENT FLOW--SMOOTH SURFACE

The formula for drag coefficient for turbulent flow in

smooth pipes is
CD_--0.079R_-I/_

This formula is based on the experimental workof Blasius

(see reference 3, p. 136), for which the Reynolds number

range was rather limited. Later work by Nikuradse (ref-
erence 5) extended the range of Reynolds number to a

much higher value. The following formula of the type
developed by yon Khrm_in fits the data better:

1

_-_---- --0.40+4.00 log_0 R_ _/-CD

(See reference 8, p. 338.) In the present paper a formula of

this type with different constants is developed:

_/=_----0.40+4.07 log_0 R,_/C-_D

TURBULENT FLOW--ROUGH SURFACE

For turbulent flow in rough pipes

_C_----3.46 +4.00 log,0 a

The experimental work in deriving this formula was done

by Nikuradse. (See reference 8, p. 380, and reference 6.)

REVOLVING DISKS

SYMBOLS

The following symbols are used in the formulas for revolv-

ing disks:
C_ moment coefficient

GDz local drag coefficient at radius x

RZ
Reynolds number at radius x (_ _-)

LAMINAR FLOW

For laminar flow

and
G_----- 3.87R-1/2

CD 3.87 Rz_l/2

17

This formula for local drag coefficient is derived from the
relation

CD _5+2n

For the development of this relation and for references, see
the section entitled "Experiments on Revolving Disks" in

this paper.

For turbulent flow

and

TURBULENT FLOW

The formula for the local drag coefficient CDz is derived

from the equation for the moment coefficient CM in the same

way as for the case of laminar flow. The local drag coefficient
in logarithmic form may be given as

_/_-_--2.05+4.07 log_0 R,_CD

The constant --2.05 has been adjusted to fit the data of

figure 3.

REVOLVING CYLINDERS

For laminar flow

4

For turbulent flow on smooth cylinders

_/_-_------0.6+4.07 logt0 R_

For turbulent flow on rough cylinders

1 (%
_----2.1 +4.0 log,0

The development of these formulas and the references are

given in the section entitled "Experiments on Revolving
Cylinders."
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